
2021 NDIA GROUND VEHICLE SYSTEM ENGINEERING AND TECHNOLOGY
SYMPOSIUM

MODELING SIMULATION AND SOFTWARE TECHNICAL SESSION
AUGUST 10-12, 2021 - NOVI, MICHIGAN

FAST LIDAR VEGETATION RESPONSE MODELING IN SIMULATION

Rich Mattes, James Pace

Neya Systems

ABSTRACT
Off-road autonomy development is increasingly leveraging simulation for its

ability to rapidly test and train new algorithms as well as simulate a wide variety
of terrains and environmental conditions. Unstructured off-road environments
require modeling complex environmental phenomena, such as LIDAR responses
from vegetation. Neya has developed an approach to characterize the variability
of measurements of vegetation and approximate the variability of vegetation
measurements using that characterization. This method adds a small overhead
to existing LIDAR models, works with many types of LIDAR sensor models, and
simply requires objects to be tagged in the environment as vegetation for the
sensor models to respond appropriately.

Citation: R. Mattes, J. Pace, ”Fast LIDAR Vegetation Response Modeling in Simulation”, In Proceedings
of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug.
10-12, 2021.

1. INTRODUCTION
Off-road environments consist of complex

and unstructured features, posing challenges
for Autonomous Ground Vehicles (AGVs) and
their off-road autonomy software. Accurately
representing complex features in a simulation
environment, such that simulated AGV sensor
measurements provide enough fidelity to stand
in for real sensors, poses a significant challenge.
Simulation engineers are constantly making
trade-offs between model fidelity and execution
speed in the context of the simulation’s interaction
with an autonomy system. Models that approximate
relevant dynamics of a system without introducing
a significant amount of computational complexity

greatly enhance the utility of simulation tools.
One such trade off is how accurately to model

a LIDAR’s response to vegetation. Vegetation in
off-road environments contains fine geometric details
at a large scale, representing those fine details
in a simulation environment requires significant
computational resources. This paper describes
a methodology developed for LIDAR-based
modeling of vegetation which approximates the
impact of vegetation’s complex geometry on
LIDAR measurements without requiring detailed
vegetation geometry models. The methodology
was implemented in a simulation environment,
and results of our implementation are compared
with data collected from field experiments in



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

off-road environments. The execution time of our
implementation is measured to capture the overhead
of the algorithm compared to an unmodified LIDAR
model.

2. LIDAR MODELING IN SIMULATION
Scanning 3D LIDAR sensors are a popular

sensor in on-road and off-road vehicle autonomy.
They provide a 360 degree 3D point cloud of
sampled ranges in the environment, measured with
centimeter-level accuracy, several times per second.
These high bandwidth (up to millions of points
per second), continuous measurements are used to
generate detailed models of the autonomous vehicle’s
operating environment.

LIDAR models in 3D simulators must provide
a realistic representation of range measurements
originating from a real sensor to stand in for
real LIDAR sensors. The required fidelity
of the representation varies depending on the
sensitivity of the algorithms being exercised with
the sensor data. LIDAR sensor models must also
execute quickly in the simulation environment, to
enable use cases such as software-in-the-loop (SIL)
or hardware-in-the-loop (HIL) testing requiring
real-time execution speed. Based on those
constraints, simulated LIDAR range calculations
are typically implemented in 2 ways in 3D
simulation environments: collision based raytracing
and sampling of depth rasterization.

2.1. Ray Trace Based Methods
A common way to simulate LIDAR range

measurements is to approximate each LIDAR beam
with a ray cast from the sensor through the
environment. This ray tracing method uses collision
detection algorithms to propagate the ray through
the environment until it collides with an object, or
reaches the maximum detection range of the LIDAR
without a collision. Physics engines, such as Unreal’s
PhysX, provide implementations of this type of

ray-based collision detection[1], making the model
implementation relatively straightforward.

Efficiently detecting collisions with ray casts
is a complicated problem, and the complexity
increases with the number and detail of objects in
an environment. The PhysX raycast API implements
collision detection in several phases, filtering the
objects in the environment to the ones most likely
to result in a collision before performing expensive,
detailed collision checks. Increasing the number
of objects in the environment, and the detail of
those objects, slows down the collision checking
algorithms. With LIDAR sensor models requiring
potentially millions of collision checks per second,
even small slow-downs in collision checking have
large effects in the overall speed of the sensor
simulation.

2.2. Image Based Methods
Another way to simulate LIDAR sensors in a

3D simulation is to take advantage of a Graphics
Processing Unit (GPU) that can render the 3D objects
in a simulated scene. Using a GPU, the objects in
a 3D environment can be rendered such that each
pixel is colored by its distance from the camera, as
opposed to its RGB color from the object’s textures
and the environment’s lighting. The pixel values
in the depth image are then sampled computing the
propagation distances for each LIDAR beam.

This method requires that the 3D objects in the
environment to be transferred to and rendered by
a GPU. Simulation engines that are capable of 3D
rendering, through a game or other visualization
engine, implement much of the functionality required
for GPU-based LIDAR modeling. New LIDAR
instances add a similar amount of overhead as adding
a new camera to the scene for image capture.

2.3. Vegetation Modeling
While both methods provide for rapid generation

of LIDAR range returns, they typically lack fidelity
to represent the interaction of LIDAR beams with

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 2 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

dense vegetation. Increasing the fidelity of each type
of sensor model involves trade-offs for execution
time and computational resource usage.

The ray trace methods rely on 3D collision
algorithms, which are highly dependent on geometry
for performance. As the polygon count for
each object rises, it becomes more computationally
intensive to test for collisions against an object in the
environment. This is a problem for vegetation, where
individual leaves, branches, and blades of grass are
numerous, small, and complex. Adding many unique
objects to the scene with high detail also increases
memory consumption, as the physical make up of
each object must be kept in memory to be referenced
for collision detection.

Image based LIDAR methods have a similar
scaling problem. Depth values are rendered at a fixed
resolution, so as complex objects get farther away
from the sensor, the level of detail captured by the
sensor is reduced. Increasing the resolution of the
depth image captures more detail at longer ranges, at
the expense of greater GPU processing time per scan.

3. VEGETATION RESPONSE LIDAR MODEL
We have developed a methodology to represent

detailed LIDAR measurements of geometrically
complex vegetation without requiring detailed 3D
models. It adds two key features to returns
from simulated vegetation. The first is a variance
in the range measurements to emulate sampling
complex vegetation structure. Second, it contains
a dual-return model that simulates second return
paths, emulating partial reflections off of complex
vegetation.

3.1. Range Variance
The primary feature of our LIDAR model is the

selective addition of range variance for vegetation
measurements. The model first detects which LIDAR
returns originate from objects that are classified in the
simulation as vegetation. For each of these returns,

the model adds a Gaussian random amount of range
error to the return.

Naively adding large random noise values
to the range measurements occasionally causes
measurements to appear below the ground plane, or
to penetrate an otherwise solid obstacle behind the
vegetation model. To prevent this phenomena, we
perform an additional check to detect the range to any
objects behind the detected vegetation. If a collision
with an object behind the vegetation is found, that
collision range is used to limit the range error that
can be added to the vegetation measurement.

To allow our simulation to accurately simulate
the noise added by the vegetation we needed to
determine the standard deviation and mean of that
noise. As mentioned previously, our model of
the noise is that the measured range value is the
combination of the actual distance to the plant
plus some Gaussian random noise. To determine
the Gaussian noise parameters from real data, we
calculate the average and standard deviation of
the difference between the expected and measured
ranges.

The first step to measure these parameters with
real LIDAR data is to use a box filter with manually
set bounds that select only points that correspond to
vegetation. We then loop through each point that is
vegetation and calculate the difference between its
measured range the expected range at that point.

To determine the expected range value for a point
from the measured data, we calculate the average
range of its nearest neighbors. A point is considered
another point’s neighbor when that point is also
considered vegetation and is in the same LIDAR
scan ring as the original point. A neighbor point is
considered near another point when the angle from
the LIDAR to that point is close to the angle from the
LIDAR to the original point. Splitting the point cloud
into neighborhoods based on the ring and angle from
the LIDAR is effectively splitting the point cloud
based on the input to the model of the LIDAR system.
It is tempting to limit the neighborhoods based on the

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 3 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

local coordinates of the returns, except the noise in
the range from that is what we are ultimately trying
to measure.

3.2. Dual Returns
The second important feature of our LIDAR

model is support for dual returns. Newer commercial
LIDAR sensors support measurements of multiple
ranges from a single LIDAR emission. This allows
for measuring multiple partial reflections of the laser
beam, which often occurs when measuring small
features like leaves or grass that do not totally reflect
the LIDAR emission.

The approach to mitigate creating unrealistically
long range measurements by searching for objects
behind the vegetation return naturally lends itself to
simulating a dual return LIDAR. The range from the
ray trace to a second object behind the vegetation
is added as a second LIDAR return originating
from the same LIDAR emission. Dual returns are
not computed for objects that are not detected as
vegetation.

4. IMPLEMENTATION IN UNREAL
We have implemented the vegetation aware

LIDAR model as an Unreal Engine plugin working in
collaboration with the Applied Research Associates
(ARA) Virtual Heroes Division. That plugin was
integrated with VISE, an Unreal-based off-road
autonomy simulator, for testing and evaluation.
The implementation extends a custom GPU-based
LIDAR model, which relies on a custom GPU shader
that uses the values from the scene depth buffer to
determine the depth values for the pixels in the scene.
We chose the GPU LIDAR model as a basis for the
model, over a ray cast model, due to the difficulty of
consistently capturing detailed vegetation geometry
in the Unreal physics subsystem.

Unreal supports two different physics colliders,
complex and simple, which are used for different
applications depending on the required resolution of
the collider. To use ray casts to simulate LIDAR,

the colliders must have a small resolution, and thus
use complex colliders. Our experience is that assets
that can be acquired from the Unreal Marketplace
do not consistently have accurate complex colliders.
While complex colliders can be added after the assets
have been acquired, this slows down the process of
creating new environments. In contrast, our shader
based method just requires that the asset renders
correctly in the scene.

Figure 1: Top: Unreal scene with vegetation models. Bottom:
Corresponding output from ray cast LIDAR model.

Figure 1 shows an example of physics colliders
that do not represent the complexity of the vegetation
mesh. The top image shows a collection of
vegetation rendered in Unreal. The bottom
image shows the corresponding point cloud from
a ray cast LIDAR sensor model. In that point
cloud, the vegetation objects are represented by
simplified planar colliders, as can be seen by their
flat, continuous structure. Note that the smaller
vegetation in the bottom left portion of the cluster
of vegetation is not captured at all by the ray cast
LIDAR model.

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 4 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

4.1. Vegetation Model Implementation
The vegetation aware LIDAR model uses the

custom depth distance and custom stencil buffers
to determine if a pixel is considered vegetation. It
assumes that all assets in the scene that are vegetation
have been tagged with a particular custom stencil
value either when the environment is created or when
the environment is first loaded. The custom shader
encodes this information into the RGB pixel value
for the image which is sent from the shader to the
model implementation. The most significant bit of
the pixel is set to 1 if the pixel is vegetation and 0 if
it is not. The rest of the bits are used to encode the
depth of the image as an unsigned integer.

The output of the shader is then processed to
generate 3D points. The image’s pixels are sampled
at points representing the 3D LIDAR scan points
based on the angular sample rate, and the number and
vertical offset of lasers in the LIDAR. At each sample
point, the depth value is used to encode a range, and
the vegetation flag is used to determine whether to
apply the vegetation model discussed in Section 3.

LIDAR
Type

Number
of Points

Mean Variance

Real 63383 -0.099250 1.594310
Simulated 63409 -0.0912173 0.587409

Table 1: Difference between measured and expected range in
real and simulated measurements, in meters.

Table 1 shows the results from analyzing real
measurements from vegetation, as well as from
measurements taken in a representative simulated
environment. The difference in mean and variance
in the real and simulated data was used to set the
amount of noise to add to simulated vegetation
measurements to approximate real measurements.
Using these measurements, the vegetation model is
configured to apply zero-mean Gaussian noise with a
variance of approximately 1m2, or standard deviation
of 1m.

Unreal’s built in ray tracing capability is used to
determine the second LIDAR response range. It is
not possible to see through an object with the shader
without using very specific custom depth tags, which
would conflict with how we are using the tags to label
vegetation objects. For the sake of computational
efficiency, a ray trace is only performed for points
that have already been determined to be vegetation,
and the ray trace is only computed from the last
impact site (as opposed to from the sensor position).
For points that are not vegetation, the second return
is placed in the same position as the first, based on
our observations from data collected on vehicle. The
potential lack of complex physics colliders discussed
in Section 4 is less of an issue when simulating
second returns, as the algorithms Neya tests are
generally less sensitive to errors in the position of the
second returns than to errors in the position of the
first returns.

On top of generating the second return data, the
distance from the ray cast is also used to provide a
cap on the amount of noise we add when generating
the first return. Without using the second point as a
cap, the additional noise could send the first return
point past a hard object behind the vegetation, which
is unrealistic. For example, when the LIDAR is
looking down at some tall grass, one would expect
the first point to be noisy, but there would be a hard
stop where the lasers intersect with ground.

5. RESULTS
This section analyzes the output of the LIDAR

model implementation described in Section 4,
compared to the output from a a depth-based sensor
model as described in Section 2.2. It also examines
the relative computational speed of these models for
a scanning 3D LIDAR generating 10 scans a second.

5.1. Range Variance Comparison
This section looks at two different scenarios, a

dense line of bushes and a less dense lower cluster
of vegetation, using data from both simulation and

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 5 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

a real sensor. A third scenario with data from a
wooded area shows dual return results with data from
the simulation and a real sensor. The real sensor
data was generated by a Velodyne VLP32MR, a 32
beam scanning 3D LIDAR capable of dual return
measurements. For simulation, two different sensors
are compared to the real data, both using parameters
to match the VLP32MR. The first sensor is the
vegetation aware LIDAR discussed in this paper; the
second sensor is not vegetation aware, but otherwise
uses the same shader-based method to generate the
point cloud as our method.

Dense Line of Bushes
The first scenario is of a dense line of bushes.

The image on the left of Figure 2 shows a picture
taken with a camera attached to the front of the
vehicle facing a line of bushes with a road behind
them. The image on the right shows the point cloud
generated by the VLP32MR of this scene. Notice
the lack of structure in the portion of the point cloud
that corresponds to the bushes. The noise is even
more pronounced when looking at how the point
cloud changes over time. The vegetation points
change much more rapidly than the points that do not
correspond to vegetation.

Figure 2: Sample LIDAR scan from dense bushes.

Figure 3 shows a similar scene built in
simulation. The image on the left shows a capture
of a camera attached to the front of the vehicle. The
image on the right shows the point cloud generated
from the shader-based sensor that is not vegetation

aware. Much of the structure of the vegetation that
is washed out by the noise in the real point cloud is
visible in the simulated point cloud. The difference
is more pronounced when looking at how the point
cloud changes over time. The points in the point
cloud from the physical sensor change position over
time, whereas the simulated points are completely
static from scan to scan.

Figure 3: Simulated LIDAR scan from dense bushes.

Figure 4 shows the same scene, but captured by
the vegetation aware LIDAR. Like the real sensor
data, but unlike the previous simulated LIDAR data,
there is a significant amount of noise in the point
cloud. When looking at the cloud over time, unlike
the previous simulated sensor, but like the real data,
the points that are considered vegetation move and
are not completely static.

Figure 4: Simulated Vegetation LIDAR scan from dense
bushes.

Low Cluster of Bushes
The second scenario looks at a region with

slightly less dense brush. The left image in Figure 5
shows an image from a camera attached to a vehicle
facing down a path with brush on either side of the
path. The image on the right shows the point cloud

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 6 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

generated by the VLP32MR when looking at the
same scene.

Figure 5: Sample LIDAR scan from a cluster of low bushes.

Figure 6 shows the a similar scene generated in
simulation with the shader-based but not vegetation
aware sensor. Note the points in the point cloud on
the image on the right are slightly less noisy than
in the point cloud for the real data. The difference
is even more pronounced when looking at how the
point cloud changes over time. The points for the
real vary from scan to scan, whereas the points for
the simulated data do not.

Figure 6: Simulated LIDAR scan from a cluster of low bushes.

Figure 7 shows the same scenario but generates
the point cloud with our vegetation aware LIDAR.
Note there is significantly more noise in the point
cloud, closer to the real data. The improvement
is even more pronounced when looking at how the
point cloud changes over a period time. The points
from our vegetation aware LIDAR vary over time,
like the real points, whereas the points from the non
vegetation aware sensor do not.

Figure 7: Simulated Vegetation LIDAR scan from a cluster of
low bushes.

Dual Return from Wooded Area
The third scenario looks at how the simulated

vegetation aware LIDAR handles dual return data.
This scenario looks at a region with light vegetation
in a wooded area off of a trail. Figure 8 shows the
LIDAR response from the physical LIDAR. The blue
points are from the first return and the red points
are from the second. Note that there is noise in
both clouds in the region of vegetation, but the first
and second points overlap in the regions without
vegetation.

Figure 8: Sample Dual Return LIDAR scan.

Figure 9 shows a simulated scene in simulation
using our vegetation aware simulated LIDAR. Notice
that as with the real data in region without vegetation
both returns overlap, but in the region with vegetation
the position of both returns is noisy.

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 7 of 8



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 9: Simulated Dual Return Vegetation LIDAR scan.

5.2. Computational Overhead

To evaluate the computational overhead, we
spawn a single LIDAR sensor instance in a simulated
environment. Each LIDAR model has 64 simulated
beams, and a 90 degree horizontal field of view. The
simulation is configured to update 10 times a second,
in lock step with the LIDAR sensor’s update rate.
We measure the wall-clock time required to execute
the 100ms simulation steps, on a PC with an Intel
i7-6700 processor, and an NVIDIA GeForce GTX
TITAN X GPU. Results are shown in Table 2.

LIDAR Model Average
Execution
Time (sec)

Depth LIDAR 0.038
Vegetation LIDAR (Single return) 0.123
Vegetation LIDAR (Dual return) 0.158

Table 2: Wall-clock execution timing for GPU based LIDAR
models.

6. CONCLUSION

Neya has developed a method for capturing the
variation of vegetation measurements in LIDAR
models without requiring complex geometric
modeling of the vegetation in an environment. An
implementation in VISE is shown to provide range
variation for vegetation, as well as dual LIDAR
return support, with only a moderate performance
penalty.

7. REFERENCES
[1] NVIDIA Corporation, ”PhysX User’s Guide:

Scene Queries”, 2017. [Online]. Available:
https://docs.nvidia.com/gamework
s/content/gameworkslibrary/physx
/guide/Manual/SceneQueries.html.
[Accessed: 20-May-2021]

Fast LIDAR Vegetation Response Modeling in Simulation, Mattes, et al.

Page 8 of 8


